
Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Vector space of finite prefix trees for
dataflow matrix machines

Michael Bukatin

HERE North America LLC, Burlington, MA

Joint work with Jon Anthony
- - -

51st Spring Topology and Dynamical Systems Conference,

Special Session on Topology and Computer Science, March 10, 2017

1 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Electronic coordinates

These slides are linked from my page on partial inconsistency and
vector semantics of programming languages:

http://www.cs.brandeis.edu/∼bukatin/partial inconsistency.html

E-mail:

bukatin@cs.brandeis.edu

(This is a continuation of my Leicester SumTopo 2016 talk.
I’ll repeat some slides, while trying to minimize the overlap.)

2 / 50

http://www.cs.brandeis.edu/~bukatin/partial_inconsistency.html

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Outline

1 Vector semantics and partial inconsistency

2 Warmus numbers and ReLU

3 Recurrent neural networks and dataflow matrix machines

4 Vector space of finite prefix trees

5 Self-modifying dynamical systems

3 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Algebraic extensions and partial inconsistency

Algebraic extension of reals with respect to multiplication leads to
imaginary numbers, and then to complex numbers.

Algebraic extension of the monoid of interval numbers with respect
to addition leads to overdefined pseudosegments of negative length,
such as [3, 2], and then to the vector space of Warmus numbers.

Algebraic extension of the probabilistic measures over X with
respect to multiplication by real scalars leads to positive and
negative measures over X , and then to the vector space of signed
measures over X .

In this fashion, extensions resulting in vectors spaces give rise to
partially inconsistent elements, such as negative probabilities and
pseudosegments of negative length.

4 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Partial inconsistency landscape

Negative distance/probability/degree of set membership

Bilattices

Partial inconsistency

Non-monotonic inference

Bitopology

x = (x ∧ 0) + (x ∨ 0) or x = (x ∧ ⊥) t (x ∨ ⊥)

Scott domains tend to become embedded into vector spaces

Modal and paraconsistent logic and possible world models

Bicontinuous domains

The domain of arrows, DOp × D or COp × D

5 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Warmus numbers

Start with interval numbers, represented by ordinary segments.

Add pseudosegments [a, b], such that b < a.

This corresponds to contradictory constraints, x ≤ b&a ≤ x .

The new set consists of segments and pseudosegments.

Addition: [a1, b1] + [a2, b2] = [a1 + a2, b1 + b2].

True minus: −[a, b] = [−a,−b].

−[a, b] + [a, b] = [0, 0].

This gets us a group and a 2D vector space.
6 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

True minus is antimonotonic

x v y ⇒ −y v −x .

True minus maps precisely defined numbers, [a, a], to precisely
defined numbers, [−a,−a].

Other than that, true minus maps segments to pseudosegments
and maps pseudosegments to segments.

In the bicontinuous setup, true minus is a bicontinuous function
from [R] to [R]Op (or from [R]Op to [R]).

7 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Multiple rediscoveries

Known under various names: Kaucher interval arithmetic, directed
interval arithmetic, generalized interval arithmetic, modal interval
arithmetic, interval algebraic extensions, etc.

First mention we know: M. Warmus, Calculus of Approximations.
Bull. Acad. Pol. Sci., Cl. III, 4(5): 253-259, 1956,
http://www.cs.utep.edu/interval-comp/warmus.pdf

A comprehensive repository of literature on the subject is
maintained by Evgenija Popova: The Arithmetic on Proper &
Improper Intervals (a Repository of Literature on Interval Algebraic
Extensions),
http://www.math.bas.bg/~epopova/directed.html

8 / 50

http://www.cs.utep.edu/interval-comp/warmus.pdf
http://www.math.bas.bg/~epopova/directed.html

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

From Cartesian to Hasse representation

9 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Partially inconsistent interval numbers as a domain of
arrows

[R] = R× ROp

(There is a tension between the group structure on R and [R] and the axioms
of domains requiring ⊥ and > elements which can be satisfied by restricting to
a segment of reals, or by adding −∞ and +∞. I am mostly being ambiguous
about this in this slide deck, but this is something to keep in mind.)

10 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Bitopology and d-frames

Achim Jung, M. Andrew Moshier. On the bitopological nature of
Stone duality. Technical Report CSR-06-13. School of Computer
Science, University of Birmingham, December 2006, 110 pages.

11 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

d-frame for the (lower, upper) bitopology on R

d-frame elements are pairs 〈L,U〉 of open rays, 〈(−∞, a), (b,+∞)〉
(a and b are allowed to take −∞ and +∞ as values).

Non-overlapping pairs of open rays are consistent (a ≤ b),
overlapping pairs of open rays (b < a) are total.

12 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Correspondence with partially inconsistent interval numbers

The bilattice isomorphism between d-frame elements and partially
inconsistent interval numbers with “infinity crust”:
〈(−∞, a), (b,+∞)〉 corresponds to a partially inconsistent interval
number [a, b].

Consistent, i.e. non-overlapping, pairs of open rays (a ≤ b)
correspond to segments. Total, i.e. covering the whole space, pairs
of open rays (b < a) correspond to pseudosegments.

13 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Logic for fuzzy paraconsistent mathematics

Traditional fuzzy math: logic based on [0, 1].

Paraconsistent math: logic based on the 4-valued bilattice.

Fuzzy paraconsistent math: logic based on the bilattice of
Warmus numbers (probably within [0,1] or within [-1,1], or all reals
with added “infinity crust”).

14 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

References

Section 4 of Bukatin and Matthews, Linear models of computation
and program learning, GCAI 2015, EasyChair Proceedings in
Computing, 36, pages 66–78, 2015,
http://easychair.org/publications/download/Linear_

Models_of_Computation_and_Program_Learning

(”Tbilisi paper”)

Slides of my November 2014 talk at Kent State University:
http://www.cs.brandeis.edu/~bukatin/

PartialInconsistencyProgressNov2014.pdf

15 / 50

http://easychair.org/publications/download/Linear_Models_of_Computation_and_Program_Learning
http://easychair.org/publications/download/Linear_Models_of_Computation_and_Program_Learning
http://www.cs.brandeis.edu/~bukatin/PartialInconsistencyProgressNov2014.pdf
http://www.cs.brandeis.edu/~bukatin/PartialInconsistencyProgressNov2014.pdf

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Monotonic evolution of Warmus numbers by additions

Consider x v (x + x1) v (x + x1 + x2) v . . .

Then every xi = [ai , bi] must be a pseudo-segment
anti-approximating zero:

[0, 0] v [ai , bi], that is bi ≤ 0 ≤ ai .

(https://arxiv.org/abs/1610.00831, Appendix A)

16 / 50

https://arxiv.org/abs/1610.00831

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Rectifiers and quasi-metrics

It was typical to use sigmoid non-linearities as activation functions
in neural nets, but a few years ago people discovered that ReLU
(rectified linear units) often work much better:
ReLU(x) = max(0, x).

This is an integral of the Heaviside step function. Lack of
smoothness at 0 does not seem to interfere with gradient methods,
and otherwise it’s nice when the derivatives are so simple.

Our standard quasi-metrics on reals are closely related to ReLU:

q1(x , y) = ReLU(x − y) = q2(y , x).

(https://arxiv.org/abs/1610.00831, Appendix B)

17 / 50

https://arxiv.org/abs/1610.00831

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Linking two previous slides together

x v (x + [ReLU(a1),−ReLU(−b1)]) v
(x + ReLU(a1),−ReLU(−b1)] + [ReLU(a2),−ReLU(−b2)]) v . . .

(The first new observation in this talk compared to Leicester)

[cf. the use of anti-monotonic involutions to perform
anti-monotonic inference in Section 4.14, “Computational Models
with Involutions”, of the Tbilisi paper]

18 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Concatenated ReLU

x 7→ (ReLU(x),ReLU(−x)) from
Wenling Shang et al., https://arxiv.org/abs/1603.05201

We can think about this as “incorporating both (dual to each
other) quasi-metrics on the reals”.

Addresses the ”problem of dying ReLUs” discussed in
[https://medium.com/@karpathy/
yes-you-should-understand-backprop-e2f06eab496b]

In terms of scalar neurons, this is a neuron with two outputs.

TensorFlow authors thought crelu to be important enough to
include it into their very short list of built-in activation functions,
starting from version 0.11 (discuss difficulties related to shape).

19 / 50

https://arxiv.org/abs/1603.05201
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Warmus numbers and split-complex numbers

Depending on how one defines multiplication, Warmus numbers
can be viewed as the ring of split-complex numbers.

[D. H. Lehmer (1956) Review of ”Calculus of Approximations”
from Mathematical Reviews,
http://www.ams.org/mathscinet/pdf/81372.pdf]

see also https:

//en.wikipedia.org/wiki/Split-complex_number#History

and
https://en.wikipedia.org/wiki/Interval_(mathematics)

#Topological_algebra

20 / 50

http://www.ams.org/mathscinet/pdf/81372.pdf
https://en.wikipedia.org/wiki/Split-complex_number#History
https://en.wikipedia.org/wiki/Split-complex_number#History
https://en.wikipedia.org/wiki/Interval_(mathematics)#Topological_algebra
https://en.wikipedia.org/wiki/Interval_(mathematics)#Topological_algebra

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Neural networks as a model of computations

Computations with streams of numbers.

Straightforward extensions of recurrent neural networks are
Turing-complete.

There is a variety of mechanisms to provide unbounded memory
required for Turing completeness:

Neural net as a controller for external memory [Pollack 1987,
and a lot of modern research]

Real numbers of unlimited precision [Sontag and Siegelmann,
early 1990-s]

Countable-sized neural net, with finite and possibly expanding
part of it being active at any given moment of time [approach
of dataflow matrix machines]

21 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Recurrent neural networks - the core part

A finite set of neurons indexed by i ∈ I .

”Two-stroke engine”:

”Up movement”: for all i , yi := f (xi).

”Down movement”: for all i , xi :=
∑

j∈I wij ∗ yj .

(wij) is the matrix of weights.

(Core part only, input and output omitted.)

22 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Dataflow matrix machines as a generalization of RNNs

Arbitrary linear streams.

A finite or countable collection of available kinds of linear
streams.

A finite or countable collection of neuron types.

Each neuron type:

a nonnegative input arity,

a nonnegative output arity,

a particular kind of linear streams is associated with each
input and each output,

a particular built-in stream transformation.

23 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Dataflow matrix machines as a generalization of RNNs

Countable collection of neurons of each type.

Hence countable number of inputs xi and outputs yj .

Take countable matrix of weights with finite number of non-zero
elements, and in particular make sure that wij can be non-zero only
if the same kind of linear streams is associated with xi and yj .

Only neurons with at least one nonzero input or output weight are
active, otherwise we keep them silent and treat their outputs as
zeros. Hence only a finite number of neurons are active.

24 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

”Two-stroke engine”

”Up movement”: for all active neurons C ,
y1,C , ..., yn,C := fC (x1,C , ..., xm,C).

n, m, and fC correspond to the type of the neuron C .

”Down movement”: for all inputs i having non-zero weights
associated with them, xi :=

∑
{j | wij 6=0} wij ∗ yj .

25 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

RNNs as a general-purpose programming platform

RNNs are Turing-universal (unbounded memory is required).

However they are not a convenient general-purpose programming
language, but belong to the class of

https:

//en.wikipedia.org/wiki/Esoteric_programming_language

and

https://en.wikipedia.org/wiki/Turing_tarpit

together with many other elegant and useful Turing-universal
systems such as Conway’s Game of Life and LaTeX.

26 / 50

https://en.wikipedia.org/wiki/Esoteric_programming_language
https://en.wikipedia.org/wiki/Esoteric_programming_language
https://en.wikipedia.org/wiki/Turing_tarpit

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

DMMs as a general-purpose programming platform

DMMs are much more powerful than RNNs:

arbitrary linear streams

neurons with multiple input arity

selection of convenient built-in transformations

friendliness of DMMs towards sparse vectors and matrices

self-referential facilities

approximate representations of infinite-dimensional vectors
(samples from probability distributions and signed measures)

27 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Trend towards similar generalizations in machine learning

Trend towards speaking in terms of layers (i.e. non-sparse vectors)
instead of individual neurons.

Trend towards implicit (and, occasionally, explicit) use of neurons
with multiple inputs and outputs.

E.g. the usefulness of activation function (x , y) 7→ x ∗ y was
understood long ago [e.g. Pollack 1987], but it turns out that it is
used implicitly in modern recurrent neural net architectures, such
as LSTM and Gated Recurrent Unit networks:
[https://arxiv.org/abs/1610.00831, Appendix C]

28 / 50

https://arxiv.org/abs/1610.00831

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Reducing complexity of dataflow matrix machines

Many kinds of linear streams. Many types of neurons, with
different input and output arities, and with different kinds of linear
streams associated with each input and output.

Can we make this less complicated?

Consider a countable set L (in practice, a set of legal hash keys in
your favorite programming language).

Consider finite ordered sequences of non-negative length of the
elements of L (paths). Denote the set of those paths as P.

The vector space V is the space of formal finite linear
combinations of elements of P.

29 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Finite prefix trees = recurrent maps

V is the space of finite prefix trees with intermediate nodes from L
and non-zero numbers as leaves.

V can also be understood as a space of recurrent maps, where
elements of L are mapped into pairs of a number and an element
of V (if an element is mapped into the pair of zeros, we omit it
from the map description, and we consider the maps of finite
overall description).

30 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Finite prefix trees = ”mixed rank tensors”

V can also be understood as a space of sparse ”mixed rank
tensors” with finite number of non-zero coordinates, where ”tensor
of rank N” is understood simply as an N-dimensional matrix, as it
is customary in machine learning.

If the only path in the tree is of the length 0, we think about the
vector in question as a scalar (tensor of rank 0).

If all paths are of the length 1, we think about the vector in
question as a one-dimensional vector (tensor of rank 1).

If all paths are of the length 2, we think about the vector in
question as a matrix (tensor of rank 2).

Et cetera...

31 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Finite prefix trees = ”mixed rank tensors”

Now consider an arbitrary finite prefix tree from V . It contains
paths of various lengths. Paths of the length 1 if any correspond to
coordinates of a one-dimensional vector, paths of the length 2 if
any correspond to the elements of a matrix, etc.

Therefore, we call an arbitrary v from V a ”mixed tensor”. It can
contain coordinates for tensors of rank 1, 2, 3, etc, together with a
scalar (the coordinate for the tensor of rank 0) at the same time.

(The alternative terminology might be a ”mixed rank tensor”.)

32 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Variadic neurons

The remaining element of complexity is different input and output
arities in different neuron types.

The space V is rich enough to enable us to represent variadic
neurons (neurons with variable input and output arities) via
non-linear transformations of V with one argument and one result,
by dedicating the first layer of keys of a recurrent map to serve as
names of inputs and outputs.

Therefore a type of neuron is simply a (generally non-linear)
transformation of V .

33 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Variadic neurons

The network matrix columns naturally have a three-level hierarchy
of indices (type of neuron, name of neuron of a given type, name
of an output of a given neuron).

So the natural structure of a matrix row in this case is a sparse
“tensor of rank 3”.

The network matrix rows themselves also naturally have a
three-level hierarchy of indices (type of neuron, name of neuron of
a given type, name of an input of a given neuron).

Therefore the natural structure of the matrix itself in this case is a
sparse “tensor of rank 6”.

34 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Dataflow matrix machines: “two-stroke engine”

V - vector space of prefix trees.

Countable number of functions, f ∈ F , f : V → V .

For each f , countable number of neuron names, nf ∈ NF .

”Up movement”: for all f ∈ F , all nf ∈ Nf , yf ,nf := f (xf ,nf).

”Down movement”: for all f ∈ F , all nf ∈ Nf , all input names
i ∈ L, xf ,nf ,i :=

∑
g∈F

∑
ng∈Ng

∑
o∈L wf ,nf ,i ,g ,ng ,o ∗ yg ,ng ,o .

(wf ,nf ,i ,g ,ng ,o) is the “matrix” (6D-tensor) of weights usually
obtained via the self-referential mechanism discussed below,
computations are only done for the active part of the network.

35 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Discussion

Last year Ralph Kopperman remarked that one way to look at
dataflow matrix machines is to think about them as a formalism
allowing to handle functions with variable number of arguments.

With this new formalism, single neurons also have this ability.

36 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Discussion

Last year Andrey Radul formulated a principle stating that there is
no reason to distinguish between a neuron and a subnetwork, and
that it is a desirable property of a model to not have a difference
between a generalized neuron and a subnetwork.

The formalism of vector space of finite prefix trees and variadic
neurons brings us closer to fulfilling this principle.

37 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Generalizations

Sometimes, we would like vectors for which even this generality is
not enough, e.g. signed measures over some X (which we
computationally might present via samples from X).

For those cases, one solution is to take R⊕M instead of R as the
space of leaves of finite prefix trees (e.g. M can be the space of
signed measures over X).

38 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Self-referential facilities

Self-modifying dynamical systems/neural nets/continuous
programs.

Allow the kind of linear streams of countably-sized matrices (wij)
with finite number of non-zero elements.

Introduce neuron Self having a stream of matrices (wij) on its
output and use the current last value of that stream as the network
matrix (wij) during the computations on each ”down movement”:

xi :=
∑

{j | wij 6=0} wij ∗ yj .

39 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Self-referential facilities

In the first version of our formalism, Self has a single input taking
the same kind of stream of matrices and the identity
transformation of streams, so it just passes its input through.

Its output is connected with weight 1 to its input, hence it is
functioning as an accumulator of additive contributions of other
neurons connected to its input with non-zero weights.

40 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Self-referential facilities

Now we think, it is more convenient to have two separate inputs
for Self, xW and x∆W , connect the output of Self yW to xW
with weight 1, take additive contribution from other neurons at the
x∆W input, and compute xW + x∆W on the ”up movement”.

This is the mechanism we propose as a replacement of untyped
lambda-calculus for dataflow matrix machines.

[Michael Bukatin, Steve Matthews, Andrey Radul, Notes on Pure
Dataflow Matrix Machines: Programming with Self-referential
Matrix Transformations, https://arxiv.org/abs/1610.00831]

41 / 50

https://arxiv.org/abs/1610.00831

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Example: lightweight pure dataflow machines

Fixed-size matrices instead of theoretically prescribed
countable-sized matrcies (for simplicity).

Let us describe the construction of lightweight pure dataflow
matrix machine. We consider rectangular matrices M × N. We
consider discrete time, t = 0, 1, . . ., and we consider M + N
streams of those rectangular matrices, X 1, . . . ,XM ,Y 1, . . . ,Y N .
At any moment t, each of these streams takes a rectangular matrix
M × N as its value. (For example, X 1

t or Y N
t are such rectangular

matrices. Elements of matrices are real numbers.)

42 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Example: lightweight pure dataflow machines

Let’s describe the rules of the dynamical system which would allow
to compute X 1

t+1, . . . ,X
M
t+1,Y

1
t+1, . . . ,Y

N
t+1 from

X 1
t , . . . ,X

M
t ,Y 1

t , . . . ,Y
N
t . We need to make a choice, whether to

start with X 1
0 , . . . ,X

M
0 as initial data, or whether to start with

Y 1
0 , . . . ,Y

N
0 . Our equations will slightly depend on this choice. In

our series of preprints we tend to start with matrices Y 1
0 , . . . ,Y

N
0 ,

and so we keep this choice here, even though this might be slightly
unusual to the reader. But it is easy to modify the equations to
start with matrices X 1

0 , . . . ,X
M
0 .

43 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Example: lightweight pure dataflow machines

Matrix Y 1
t will play a special role, so at any given moment t, we

also denote this matrix as A. Define X i
t+1 =

∑
j=1,...,N Ai ,jY

j
t for

all i = 1, . . . ,M. Define Y j
t+1 = f j(X 1

t+1, . . . ,X
M
t+1) for all

j = 1, . . . ,N.

So, Y 1
t+1 = f 1(X 1

t+1, . . . ,X
M
t+1) defines Y 1

t+1 which will be used as
A at the next time step t + 1. This is how the dynamical system
modifies itself in lightweight pure dataflow matrix machines.

44 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Example: wave of weights in a self-modifying system

From [https://arxiv.org/abs/1610.00831, Appendix D.2.2]

Define f 1(X 1
t , . . . ,X

M
t) = X 1

t + X 2
t . Start with Y 1

0 = A, such that
A1,1 = 1, A1,j = 0 for all other j , and maintain the condition that
first rows of all other matrices Y j , j 6= 1 are zero. These first rows
of all Y j , j = 1, . . . ,N will be invariant as t increases. This
condition means that X 1

t+1 = Y 1
t for all t ≥ 0.

45 / 50

https://arxiv.org/abs/1610.00831

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Example: wave of weights in a self-modifying system

Let’s make an example with 3 constant update matrices:
Y 2
t ,Y

3
t ,Y

4
t . Namely, say that

f 2(X 1
t , . . . ,X

M
t) = U2,

f 3(X 1
t , . . . ,X

M
t) = U3,

f 4(X 1
t , . . . ,X

M
t) = U4.

Then say that U2
2,2 = U3

2,3 = U4
2,4 = −1, and

U2
2,3 = U3

2,4 = U4
2,2 = 1, and that all other elements of U2,U3,U4

are zero1. And imposing an additional starting condition on
Y 1

0 = A, let’s say that A2,2 = 1 and that A2,j = 0 for j 6= 2.

1Essentially we are saying that those matrices “point to themselves with
weight -1”, and that “U2 poiints to U3, U3 points to U4, and U4 points to U2

with weight 1”.
46 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Example: wave of weights in a self-modifying system

Now, if we run this dynamic system, the initial condition on second
row of A would imply that at the t = 0, X 2

t+1 = U2. Also
Y 1
t+1 = X 1

t+1 + X 2
t+1, hence now taking A = Y 1

1 (instead of
A = Y 1

0), we obtain A2,2 = 1 + U2
2,2 = 0, and in fact A2,j = 0 for

all j 6= 3, but A2,3 = U2
2,3 = 1.

Continuing in this fashion, one obtains
X 2

1 = U2,X 2
2 = U3,X 2

3 = U4,X 2
4 = U2,X 2

5 = U3,X 2
6 = U4,X 2

7 =
U2,X 2

8 = U3,X 2
9 = U4, . . ., while the invariant that the second

row of matrix Y 1
t has exactly one element valued at 1 and all other

zeros is maintained, and the position of that 1 in the second row of
matrix Y 1

t is 2 at t = 0, 3 at t = 1, 4 at t = 2, 2 at t = 3, 3 at
t = 4, 4 at t = 5, 2 at t = 6, 3 at t = 7, 4 at t = 8, . . .

47 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Example: wave of weights in a self-modifying system

This element 1 moving along the second row of the network matrix
is a simple example of a circular wave pattern in the matrix
A = Y 1

t controlling the dynamical system in question.

It is easy to use other rows of matrices U2,U3,U4 as “payload” to
be placed into the network matrix Y 1

t for exactly one step at a
time, and one can do other interesting things with this class of
dynamical systems.

48 / 50

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Initial open-source prototypes

https://github.com/anhinga/fluid

https://github.com/jsa-aerial/DMM

Minimalistic self-referential example described above:

https://github.com/anhinga/fluid/tree/master/Lightweight_Pure_DMMs/aug_27_16_experiment

(in Processing 2.2.1)

https://github.com/jsa-aerial/DMM/blob/master/examples/dmm/oct_19_2016_experiment.clj

(in Clojure)

49 / 50

https://github.com/anhinga/fluid
https://github.com/jsa-aerial/DMM
https://github.com/anhinga/fluid/tree/master/Lightweight_Pure_DMMs/aug_27_16_experiment
https://github.com/jsa-aerial/DMM/blob/master/examples/dmm/oct_19_2016_experiment.clj

Vector semantics and partial inconsistency
Warmus numbers and ReLU

Recurrent neural networks and dataflow matrix machines
Vector space of finite prefix trees
Self-modifying dynamical systems

Electronic coordinates

These slides are linked from my page on partial inconsistency and
vector semantics of programming languages:

http://www.cs.brandeis.edu/∼bukatin/partial inconsistency.html

E-mail:

bukatin@cs.brandeis.edu

50 / 50

http://www.cs.brandeis.edu/~bukatin/partial_inconsistency.html

	Vector semantics and partial inconsistency
	Warmus numbers and ReLU
	Recurrent neural networks and dataflow matrix machines
	Vector space of finite prefix trees
	Self-modifying dynamical systems

