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Partial inconsistency landscape

Negative distance/probability/degree of set membership

Bilattices

Partial inconsistency

Non-monotonic inference

Bitopology

x = (x ∧ 0) + (x ∨ 0) or x = (x ∧ ⊥) t (x ∨ ⊥)

Scott domains tend to become embedded into vector spaces

Modal and paraconsistent logic and possible world models

Bicontinuous domains

The domain of arrows, DOp × D or COp × D
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Partially inconsistent interval numbers

Interval numbers don’t form a group with respect to +.

Add pseudosegments [a, b] with contradictory property that b < a
(the length b − a is negative).

The resulting structure is a group and a vector space
(this was rediscovered many times in the last 60 years).

Two partial orders (a bilattice):

Informational partial order: [a, d ] v [b, c] iff a ≤ b & c ≤ d .

Material partial order: [a, d ] ≤ [b, c] iff a ≤ b & d ≤ c.
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From Cartesian to Hasse representation
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Negative probability

The space of signed measures (“charges”) is a vector space.

The most well-known example:
Wigner quasiprobability distribution.

Intuition: see [Richard Feynman, “Negative probability”].
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Uses of negative probability

Phase space formulation of quantum mechanics.

Denotational semantics of probabilistic programs [Kozen].

Occasional use in machine leaning.

Occasional use in quantum algorithms.

Should be used in probabilistic models of neural systems.
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Regulation of gene expression

Digital software: too brittle, too sensitive to minor variation.

Biological systems: flexible and adaptive with respect to variation.

Biological cells function at wide ranges of the level of expression of
various proteins, which are machines working in parallel.

Regulation of the level of expression of specific proteins is a
key element of flexibility of biological systems.
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Regulation of gene expression

Evolutionary developmental biology: the flexible architecture
together with conservation of core mechanisms is crucial for the
observed rate of biological evolution [Gerhart, Kirschner].

High robustness with respect to varying levels of expression ⇒
higher robustness with respect to mutations.

Morphology evolves largely by altering the expression of
functionally conserved proteins [Sean Carrol].
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Regulation of gene expression and evolutionary
programming

To incorporate regulation of expression into a system of genetic
programming one might evolve programs describing systems of
parallel computational processes.

Then one might take the CPU allocation and other computational
resources given to a particular computational process as
computational equivalent of the level of expression of a particular
protein.

Of course, many of the architectures for parallel computations are
brittle as well, with delicate mechanisms of writing to shared
memory and locks. To achieve flexibility one should use parallel
architectures which minimize those delicate interdependencies.
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Linear combination of execution runs

Computational architectures which admit the notion of linear
combination of execution runs are particularly attractive.

Then one can regulate the system simply by controlling coefficients
in a linear combination of its components.

Today’s talk: two computational architectures which admit linear
combinations of execution runs.
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Linear combination of execution runs

Today’s talk: two computational architectures which admit linear
combinations of execution runs.

Probabilistic sampling

Generalized animation
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Sampling semantics

The inputs, outputs, and intermediate variables are streams of
elements sampled from appropriate probability distributions.

Assume samplers generating points of their distributions with a
uniform speed, so that the notion of “a number of points
generated per unit of time” is well defined.

To implement linear combinations of probabilistic programs
with positive coefficients run those programs in parallel, merging
appropriate output streams. Control the values of coefficients by
changing the relative execution speed of those programs.

(Negative coefficients: sampling via a positive channel and a
negative channel; negative probability.)
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Probabilistic sampling and evolutionary programming

The connections between probabilistic programming and
evolutionary/genetic programming are much tighter than it is
usually acknowledged.

MCMC is essentially an evolutionary method:

acceptance/rejection of the samples corresponds to selection

production of new samples via modifications of the accepted
ones corresponds to mutations to produce offspring from the
survivors.
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Probabilistic sampling and evolutionary programming

Bayesian Optimization Algorithm changes the procedure of
producing the next generation in genetic algorithms from pairwise
crossover to the resampling from the estimated distribution of the
individuums selected for fitness.

Martin Pelikan. Bayesian Optimization Algorithm: from Single
Level to Hierarchy, PhD Thesis 2002.
http://www.medal-lab.org/files/2002023.pdf

Used by the seminal
Moshe Looks. Competent Program Evolution, PhD Thesis 2006.
http://metacog.org/doc.html
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Probabilistic sampling and evolutionary programming

These papers seem to indicate that both fields tend to disregard
this connection:

Zoubin Ghahramani, Probabilistic machine learning and artificial
intelligence, Nature 521 (28 May 2015) 452–459.

Agoston Eiben, Jim Smith, From evolutionary computation to the
evolution of things, Nature 521 (28 May 2015) 476–482.
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Higher-order evolution/higher-order probabilistic
programming

Higher-order evolution, adaptive evolution, evolving the
evolutionary mechanisms, acceleration of evolution.

What is the right way to talk about higher-order probabilistic
programming?

The tradition is to talk about probabilistic lambda-calculus, or to
empasize implementing probabilistic programming within a
higher-order functional programming language, but I am not sure it
is the angle of view we need here.
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Higher-order evolution/higher-order probabilistic
programming/sampling the samplers

What is “higher-order probabilistic programming”?

Recently we are seeing examples of research implementing
higher-order sampling schemas in a more narrow and focused sense
of the word: samplers which generate other samplers, probabilistic
programs sampling the space of probabilistic programs, generative
models which emit other generative models as points.

In this narrow sense, higher-order probabilistic programming is the
ability to take streams of probabilistic programs as inputs and
to produce streams of probabilistic programs as outputs.

This is a particularly important development for program learning.
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Sampling the samplers

http://arxiv.org/abs/1407.2646

Yura N. Perov, Frank D. Wood.
Learning Probabilistic Programs. July 9, 2014.

A notion of compilation for probabilistic program (more
similar to partial evaluation).

Anglican engine (PMCMC, Clojure)

Maddison-Tarlow paper
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Sampling the samplers

http://cims.nyu.edu/∼brenden/LakePhDThesis.pdf

Brenden M. Lake.
Towards more human-like concept learning in machines:
Compositionality, causality, and learning-to-learn.
MIT PhD Thesis, September 2014.

Learning from one or a few examples

Learning rich conceptual representations
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Fuzzy sampling and animations

Fuzzy samplings where points are taken with real coefficients
might be even more attractive.

One can think about them as generalized animations, where points
might be indexed by a more sophisticated index set than a
discretized rectangle.

Here it is easy to allow negative coefficients in linear combinations
(speaking in terms of conventional animation this means that 0 is
at some grey level, between black and white).

One can leverage existing animations, digital and physical (such as
light reflections and refractions in water), as computational oracles.
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Expressive power

Music is a fast animation (typically on the index set of 2 points for
usual stereo).

Very short programs can express complex dynamics.

A way to incorporate aesthetic criteria into software systems.
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Linear combinations of animations

Conventional color images and music are examples of generalized
animations.

The use of linear combinations of those is standard in video and
audio mixing software.
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Evolving animations

Good track record of evolving animations.

Another feature animations seem to share with sampling
architecture is that they tend to be non-brittle, and that their
mutations and crossover tend to produce meaningful results in the
evolutionary setting.
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Non-standard secondary structures on the set of points

A lot of expressive power of this architecture comes from the ability
to have non-standard secondary structures on the set of points.

Points can be associated with vertices or edges of a graph,
grammar rules, positions in a matrix, etc.

We are beginning to formulate mechanisms of higher-order
animation programming via variable illumination of elements of
such structures.
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A bit more about animations

Probabilistic programming is better if the goal is well-defined,
animations are better if one wants to explore emergent behavior.

A large and very active creative coding community.
Students love this subject.
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Hybrid systems

Instead of implementing everything in terms of linear systems one
can use a hybrid approach, mixng linear sytems and traditional
software.

Inspiration: hybrid hardware connecting live neural tissue and
electronic circuits.

One can decide to use large existing software components and try
to automate the process of connecting them together using flexible
probabilistic pieces. This is potentially very important.

One can try to use small inflexible components inside the flexible
”tissue” of linear models.
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Hybrid systems

One can try to use small inflexible components inside the flexible
”tissue” of linear models.

This is what we do in Project Fluid.

https://github.com/anhinga/fluid
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Dataflow programming for linear models of computations

Because probabilistic sampling and generalized animation are both
stream-based, dataflow programming is a natural framework for
this situation.

Dataflow architecture is convenient for program learning, because
syntax of dataflow programs would typically be more closely related
to their semantics than the syntax of more conventional programs.
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Project Fluid

https://github.com/anhinga/fluid

MIT License

Prototypes for three dataflow architectures.

Implemented in Processing 2.2.1 (https://processing.org/).
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Project Fluid

The architectures are good for generalized animations and
probabilistic sampling.

Prototypes implemented for conventional animations.
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Project Fluid: May 2015 architecture

Bipartite graphs: data nodes and transform nodes.

Now I’d like to show a short demo.
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Project Fluid: June 2015 architecture

Almost continuous program transformations.

Continuous program transformations punctuated by isolated
“benign discontinuities” such as linear splicing (“S-insert”).
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Dataflow graph inside its own node

Dataflow graph inside its own node as it changes during the
execution of the dataflow program.
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Project Fluid: August 2015 architecture

Dataflow graphs as matrices.

From the discipline of bipartite graphs connecting target nodes of
general transformations and target nodes of linear transformations
to the matrix representation of dataflow graphs.
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Matrix machine

Green arrows form countable linear combinations, but only a finite
number of green arrows in the graph carry non-zero coefficients aij
at any given moment of time.
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Matrix machine as an infinite cylinder

Every input of a template operation is a countable linear
combination of all outputs of template operations, but only a finite
number of green arrows in the graph carry non-zero coefficients aij
at any given moment of time, all other coefficients are zero.

43 / 48



Temptations of linear models of computation
Dataflow programs and linear models of computation

Project Fluid: https://github.com/anhinga/fluid
Almost continuous program transformations
Dataflow graphs as matrices

Preprint: ”Dataflow graphs as matrices”

http://www.cs.brandeis.edu/∼bukatin/DataFlowGraphsAsMatrices.pdf

Meaningful row and column names (strings instead of numbers).

Programming with higher-order matrix elements: mechanisms for
associating aij with the target nodes of the graphs.

44 / 48

http://www.cs.brandeis.edu/~bukatin/DataFlowGraphsAsMatrices.pdf


Temptations of linear models of computation
Dataflow programs and linear models of computation

Project Fluid: https://github.com/anhinga/fluid
Almost continuous program transformations
Dataflow graphs as matrices

Beyond that preprint

We decided to transpose all matrices going forward (to swap rows
and columns).

Higher-order mechanisms in the preprint are not enough. One
should add more powerful mechanisms to generate new non-zero
elements aij (e.g. stochastic generation of new non-zero links).
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Promising platform

Looking for new methods to synthesize programs as matrices.

Looking for new idioms of higher-order programming expressed in
terms of changing the matrix elements.

It is not difficult to have rich sets of template operations.

Continuous program transformations and continuous trajectories in
large spaces of programs are therefore available .

One can evolve programs in continuous fashion.

One can sample continuous trajectories in a space of programs.
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