Partial Inconsistency and Vector Semantics

Michael Bukatin!, Ralph Kopperman?, and Steve Matthews>

! Nokia Corporation
Cambridge, Massachusetts, USA
bukatin@cs.brandeis.edu
2 Department of Mathematics
City College
City University of New York
New York, New York, USA
rdkcc@ccny.cuny.edu
3 Department of Computer Science
University of Warwick
Coventry, UK
Steve.MatthewsQwarwick.ac.uk

Abstract. This short communication lists the key elements of the mathematics
of partial inconsistency. The links between partial inconsistency and vector se-
mantics are emphasized. Possible applications to program learning are discussed.
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1 Introduction

The traditional mathematical view is that there is only one kind of contradiction and
that all contradictions imply each other and everything else. However, there is also rich
tradition of studying various kinds of graded or partial contradictions.

There are a number of common motives appearing multiple times in various studies
of graded inconsistency. These common motives link a variety of independently done
studies together and serve as focal elements of what we call the partial inconsistency
landscape [3]. We list many of these common motives and their interplay.

An especially important motive is that in the presence of partial inconsistency many
otherwise impoverished algebraic structures become groups and vector spaces. In par-
ticular, domains for denotational semantics tend to acquire group and vector space struc-
ture when partial inconsistency is present.

Known applications include handling of inconsistent information and non-monotonic
and anti-monotonic inference. Perhaps even more importantly for the advanced Al,
vector semantics is likely to offer new powerful schemes for program learning.

2 Focal Elements of the Partial Inconsistency Landscape

— Various forms of negative measure (negative length and distance, negative proba-
bility and signed measures, negative membership and signed multisets)



Bilattices

Bitopology

Domains with group and vector space structures
Non-monotonic and anti-monotonic inference

Modal and paraconsistent logic and possible world models
Bilattice pattern and Hahn-Jordan decomposition

3 Partially Inconsistent Interval Numbers

Interval numbers are segments [a,b] on the real line where a < b. One can extend inter-
val numbers by adding pseudosegments [a,b] with the contradictory property that b < a.
This structure was independently discovered many times and is known under various
names including Kaucher interval arithmetic, directed interval arithmetic, generalized
interval arithmetic, and modal interval arithmetic (a comprehensive repository of liter-
ature on the subject is maintained by Evgenija Popova [10]). Our group tends to call it
partially inconsistent interval numbers.

There are two partial orders on partially inconsistent interval numbers. The infor-
mational order, C, is defined by reverse inclusion on interval numbers: [a,d] C [b, ¢] iff
a < b and ¢ < d. The same formula is used for partially inconsistent interval numbers.
The material order is component-wise: [a,b] < [c,d] iffa < cand b < d.

Addition on interval numbers (and partially inconsistent interval numbers) is de-
fined component-wise: [ay,b1]+ [az,b2] = [a + a2,b; + bs].

The operation of weak minus is defined as —[a,b] = [—b, —a]. Addition and weak
minus are monotonic with respect to C.
Consider —[a,b] + [a,b] = [—b,—a] + [a,b] = [a — b,b —a]. If a < b, then the strict

inequality, [a —b,b—a] C [0,0], holds. So if a < b, —[a,b] + [a,b] approximates [0,0],
but is not equal to it, hence interval numbers with weak minus don’t form a group.

If one allows pseudosegments, one can define the component-wise frue minus:
—|a,b] = [—a,—D)]. Partially inconsistent interval numbers with the component-wise
addition and the true minus form a group (and a 2D vector space over reals). The true
minus maps precisely defined numbers, [a,a], to precisely defined numbers, [—a, —a].
Other than that, the true minus maps segments to pseudosegments and maps pseudoseg-
ments to segments. The true minus is anti-monotonic with respect to C.

4 Bilattices

A bilattice is a set equipped with two lattice structures defining two partial orders, the
material order, <, and the informational order, C, and an involution monotonic with
respect to L, antimonotonic with respect to <, and preserving appropriate lattice struc-
tures. Additional axioms are often imposed.

Bilattices were introduced by Matthew Ginsberg [4] to provide a unified framework
a variety of inferences schemes used in Al, such as non-monotonic inference, infer-
ence with uncertainty, etc. They are now ubiquitous in the studies of partial and graded
inconsistency.



The simplest example of a bilattice is the four-valued logic: f < L <t,f < T <t,
lcfCcT,LCctCT.

Partially inconsistent interval numbers form a bilattice. Sometimes one wants both
orders to form complete lattices. This can be achieved by allowing a and b to also take
—oo and +oo as values, or by confining @ and b within a segment [A, B], in both cases
sacrificing the property of partially inconsistent interval numbers being a group.

5 Bitopology

A bitopology is a set equipped with two topologies. There are at least three ways
bitopologies occur in studies of partial inconsistency. The connections between partial
inconsistency and bitopological Stone duality via the notion of d-frame are explored
in [6]. A fuzzy bitopology valued in lattice L is a fuzzy topology valued in the bilat-
tice L? (in particular, an ordinary bitopology is a topology valued in the four-valued
logic) [11]. Finally, in the context of bitopological groups and anti-monotonic inverse
the following situation is typical: two topologies, T and 7!, are group dual of each
other, the multiplication is continuous with respect to both topologies, and the inverse
is a bicontinuous map from (X,T,7~") to its bitopological dual, (X, 7!, T) [1].

In particular, consider the upper topology on reals (the open rays, (x,+o0), and the
empty set) and the dual lower topology (the open rays (—eoe,x) and the empty set). The
minus (which is anti-monotonic with respect to <) is a bi-continuous function from
(lower, upper) bitopology to (upper, lower) bitopology, and vice versa.

Consider the (lower, upper) bitopology on the real line. Define the bilattice isomor-
phism between the d-frame elements, i.e. pairs (L,U) of the respective open sets, and
partially inconsistent interval numbers. A pair (L,U) is a pair of open rays,
((—o0,a), (b,4o0)) (a and b are allowed to take —eo and +oo as values). This pair corre-
sponds to a partially inconsistent interval number [a, b]. Consistent, i.e. non-overlapping,
pairs of open rays (a < b) correspond to segments. Total, i.e. covering the whole space,
pairs of open rays (b < a) correspond to pseudosegments.

It is natural to ascribe negative length b — a to pseudosegments and to associate with
them generalized characteristic functions taking the value -1 in the (b,a) interval and 0
outside of that interval (signed multisets allowing negative degree of membership).

6 Negative probability and vector semantics

One can think about probabilistic programs as transformers from the probability distri-
butions on the space of inputs to the probability distributions on the space of outputs.
Dexter Kozen showed that it is fruitful to replace the space of probability distributions
by the space of signed measures [7]. One defines v < u iff u— v is a positive measure.
The space of signed measures is a vector lattice (a Riesz space) and a Banach space,
so people call this structure a Banach lattice. Denotations of programs are continuous
linear operators with finite norms. The probabilistic powerdomain is embedded into the
positive cone of this Banach lattice. The structure of Hilbert space on signed measures
can be obtained via reproducing kernel methods (see Chapter 4 of [2]).



The Hahn-Jordan decomposition, g™ = uV 0,u~ = uA0,u = u™ +u~, holds, since
it’s a theorem for all lattice-ordered groups. Defining v C piff v <yt and v <y~
one also obtains 4 = y Ly~ , making this an instance of the “bilattice pattern” [3].

Possible world models indexed by probability distributions or by signed measures
are quite fruitful in this context [3].

7 Vector semantics for program learning?

There is a strong hope that the ability to take linear combinations of programs can give
rise to new schemes of program learning. We summarize our current understanding of
the situation.

For 0 < a0 < 1 and random being a generator of uniformly distributed reals between
0 and 1, if random < o then P else Q yields a linear combination of programs P and
Q. To allow negative coefficients one needs to consider computing a negative and a
positive channel in parallel (computations are marked as negative or positive).

The situations when one can consider linear combinations of single execution runs
should be especially attractive. Probabilistic programming via MCMC sampling is one
example of this situation. To implement linear combinations of probabilistic programs
with positive coefficients one can simply execute those programs in parallel, and the
values of coefficients can be controlled by changing the relative execution speed of
those programs. To allow negative coefficients one again needs to use a negative and a
positive channel, not unlike the schemes used in retina (see pages 65 and 173 of [9]).

Fuzzy samplings where points are taken with real coefficients might be even more
attractive (one can think about them as generalized animations, where points might be
indexed by a more sophisticated index set than a discretized rectangle). Here one might
allow negative coefficients and avoid the need for a separate channel (speaking in terms
of animation this means that 0 is at some grey level, between black and white).

There are some indications that these formalisms are quite expressive, and that they
allow for powerful schemes of program learning.

Among recent examples of how expressive these formalisms might be is a system
which can solve a CAPTCHA as an inverse problem to computer graphics via an intel-
ligent animation scheme controlled by a set of MCMC-sampled parameters [8].

For an example of a powerful program learning scheme for probabilistic programs
using matrix decomposition and a context-free grammar of models see [5].
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