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1 Introduction

Interval numbers are segments [a,b] on the real line where a≤ b. Partially inconsistent
interval numbers are obtained by adding pseudosegments [a,b] with the contradictory
property that b < a.

This structure was independently discovered many times and is known under var-
ious names including Kaucher interval arithmetic, directed interval arithmetic, gener-
alized interval arithmetic, and modal interval arithmetic (a comprehensive repository
of literature on the subject is maintained by Evgenija Popova [5]). The first mention
known to us is by Warmus in 1956 [7].

While interval numbers don’t form a group with respect to addition, partially in-
consistent interval numbers do form a group. The negation operation in that group is
antimonotonic with respect to the partial order v ([a,d]v [b,c] iff a≤ b and c≤ d).

When one allows a and b to also take values of −∞ and +∞, partially inconsistent
interval numbers form a bilattice and are isomorphic to the d-frame of the (lower, upper)
bitopology on reals.

Antimonotonic negation is related to the notion of bitopological group.
Signed measures (a measure of a set is allowed to be negative) and signed multisets

(an element is allowed to have a negative degree of membership) appear naturally in this
context. Partial metrics are allowed to take negative values in this context and relaxed
metrics are themselves valued in partially inconsistent interval numbers.

Partially inconsistent interval numbers have interesting symmetries: between seg-
ments and pseudosegments, between upper and lower bounds (Ginsberg involution),
and between v and ≤.

The bilattice of partially inconsistent interval numbers seems to play a fundamental
role in mathematics of partial inconsistency.



2 Addition and Weak Minus

Addition on interval numbers (and partially inconsistent interval numbers) is defined
component-wise: [a1,b1]+ [a2,b2] = [a1 +a2,b1 +b2]. The operation of weak minus is
defined as −[a,b] = [−b,−a]. These operatons are monotonic with respect to v.

Consider −[a,b]+ [a,b] = [−b,−a]+ [a,b] = [a−b,b−a]. If a < b, then the strict
inequality, [a−b,b−a]@ [0,0], holds. So if a < b, −[a,b]+ [a,b] approximates [0,0],
but is not equal to it, hence interval numbers with weak minus don’t form a group.

3 Pseudosegments and True Minus

If one allows pseudosegments, one can define the component-wise “true minus”:−[a,b] =
[−a,−b]. Partially inconsistent interval numbers with the component-wise addition and
the true minus form a group.

The true minus maps precisely defined numbers, [a,a], to precisely defined num-
bers, [−a,−a]. Other than that, the true minus maps segments to pseudosegments and
maps pseudosegments to segments. The true minus is antimonotonic with respect to v.

4 Bilattice Properties

There are two partial orders on partially inconsistent interval numbers. The “informa-
tional order”, v, is defined above. The “material order” is component-wise: [a,b] ≤
[c,d] iff a≤ c and b≤ d.

The original definition of bilattice given by Ginsberg [3] also calls for each of those
orders to form a complete lattice. If we want to satisfy that requirement we might either
allow a and b to also take −∞ and +∞ as values or we might confine a and b within a
segment [A,B].

It is somewhat inconvenient that these modifications sacrifice the property that par-
tially inconsistent interval numbers form a group with respect to addition.

Another property which is usually imposed is the existence of Ginsberg involution
which is monotonic with respect to v and antimonotonic with respect to ≤. If we con-
sider all partially inconsistent interval numbers without infinities or allow a and b to
take −∞ and +∞ values, or if we confine a and b within segment [−A,A], then Gins-
berg involution is the weak minus. If we confine a and b within a segment [A,B], then
Ginsberg involution maps [a,b] to [A+B− b,A+B− a]. One important case here is
[A,B] = [0,1].

5 Partially Inconsistent Interval Numbers as a D-frame

For the overview of bitopology, d-frames, and bitopological Stone duality see [4].
Consider the (lower, upper) bitopology on the real line. Define the bilattice isomor-

phism between d-frame elements, i.e. pairs 〈L,U〉 of the respective open sets, and par-
tially inconsistent interval numbers. A pair 〈L,U〉 is a pair of open rays, 〈(−∞,a),(b,+∞)〉
(a and b are allowed to take −∞ and +∞ as values). This pair corresponds to a partially



inconsistent interval number [a,b]. Consistent, i.e. non-overlapping, pairs of open rays
(a≤ b) correspond to segments. Total, i.e. covering the whole space, pairs of open rays
(b < a) correspond to pseudosegments.

6 Bitopological Groups and Antimonotonic Negation

In the context of bitopological groups the following situation is typical: two topolo-
gies, T and T−1, are group dual of each other, the multiplication is continuous with
respect to both topologies, and the inverse is a bicontinuous map from (X ,T,T−1) to its
bitopological dual, (X ,T−1,T ) [1].

The minus operation on real numbers is bicontinuous from the (lower, upper) bito-
plogy to the (upper, lower) bitopology and vice versa. The corresponding map between
the d-frames is very similar to the weak minus (Ginsberg involution), except that the
order of bitopological components also needs to be swapped to respect bitopological
duality in this case (partially inconsistent interval numbers are a Cartesian product of
lower and upper bounds; swapping can be thought of as changing the order of compo-
nents in this Cartesian product).

In a simular fashion, the true minus operation on the partially inconsistent interval
numbers is bicontinuous between a (T,T−1) bitopology on the partially inconsistent
interval numbers and its dual (T−1,T ) bitopology. (Here T and T−1 must be group
dual topologies of each other, e.g. the Scott topology corresponding to v and the Scott
topology corresponding to w.)

7 Partial and Relaxed Metrics

The standard partial metric on the interval numbers is p([a1,b1], [a2,b2])=max(b1,b2)−
min(a1,a2). Hence the self-distance for [a,b] is b−a. If we extend this formula to pseu-
dosegments, the self-distance of pseudosegments turns out to be negative.

Partial metrics can be understood as upper bounds for “ideal distances”. One often
has to trade the tightness of those bounds for nicer sets of axioms. E.g. the natural upper
bound for the distance between [0,2] and [1,1] is 1, and there is a weak partial metric
which yields that. However, if one wants to enjoy the axiom of small self-distances,
p(x,x)≤ p(x,y), one has to accept p([0,2], [1,1]) = 2, since p([0,2], [0,2]) = 2.

A similar trade can be made for lower bounds. The standard interval-valued relaxed
metric produces the gap between non-overlapping segments as their lower bound, but
takes 0 as the lower bound for the distance between overlapping segments (hence 0 is
also the lower bound for self-distance). If one settles for a less tight lower bound and
allows the lower bound to be negative in those cases, one can obtain a distance with
much nicer properties: l([a1,b1], [a2,b2]) = max(a1,a2)−min(b1,b2).

We think about the pair 〈l, p〉 as a relaxed metric valued in partially inconsistent
interval numbers. The self-distance of [a,b] is [a− b,b− a] and the self-distance of a
pseudosegment is a pseudosegment.

The map [a,b] 7→ [b,a] expressing the symmetry between segments and pseudoseg-
ments also transforms 〈l, p〉 into 〈p, l〉.



8 Signed Measures and Signed Multisets

One way to think about p([a,b], [a,b]) = b− a is to say that a pseudosegment has a
negative length.

We can also revisit the correspondence between the elements of the (lower, upper)
bitopology d-frame, {〈(−∞,a),(b,+∞)〉}, and the partially inconsistent interval num-
bers. Consider the characteristic function mapping the real line to 1 and subtract from
it the characteristic functions of (−∞,a) and (b,+∞). If [a,b] is a segment, the result
is the characteristic function of that segment (valued 1 for the points belonging to the
segment and 0 for the points outside the segment). If [a,b] is a pseudosegment and if
we allow for the overlap between (−∞,a) and (b,+∞) to be subtracted twice, the result
is the generalized characteristic function, which is equal to -1 in the open interval (b,a)
and 0 outside (b,a). So we obtain a signed multiset here allowing negative degree of
membership.

9 Bilattice-valued Mathematics and Partially Inconsistent Interval
Numbers

It seems that mathematics of partial inconsistency should be bilattice-valued.
One recent confirmation of that is a paper by Rodabaugh [6] showing that L-valued

bitopology can be understood as L2-valued topology, and, in particular, that ordinary
bitopology can be understood as 4-valued topology. The 4-valued set here is the stan-
dard bilattice of 4 elements playing the same role in bitopology as the Sierpinski space
plays in topology. The L2 in general is also a bilattice, with v being obtained from the
product (L,v)× (L,v) and the material order, ≤, being obtained from the product of
the dual lattice by the original one, (L,w)× (L,v).

All key elements and motives of the partial inconsistency landscape identified by
the authors in [2] play interesting roles in mathematics of partially inconsistent interval
numbers.

While the fuzzy mathematics in general is lattice-valued, the situations where the
lattice is [0,1] or otherwise based on real numbers remain important. Similarly, while
mathematics of partial inconsistency is in general likely to be valued in bilattices, the
particular situations where the bilattice is based on partially inconsistent real numbers
(whether confined within [0,1], [−1,1], or [−∞,+∞]) are likely to play important roles.
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