
LATEX TikZposter

Dataflow Matrix Machines as a Model of Computations with Linear Streams

Michael Bukatin (HERE Technologies), Jon Anthony (Boston College)

Dataflow Matrix Machines as a Model of Computations with Linear Streams

Michael Bukatin (HERE Technologies), Jon Anthony (Boston College)

Goal

Create a generalization of neural nets sufficiently powerful for
general-purpose programming

RNN

imi1

x1

f1

y1

xk

fk

yk

o1 on

W

Fig. 1: “Two-stroke engine” for an RNN. “Down movement”:
(xt+1

1 , . . . , xt+1
k , ot+1

1 , . . . , ot+1
n )> = W·(yt1, . . . , ytk, it1, . . . , itn)>.

“Up movement”: yt+1
1 = f1(x

t+1
1 ), . . . , yt+1

k = fk(x
t+1
k ).

Linear streams

Instead of streams of numbers, any streams allowing to take
linear combinations of streams.

A finite or countable collection of kinds of linear streams.

We currently consider:

Streams of approximate representations of arbitrary vectors.

With every kind of linear streams k, associate a vector
space Vk and a way to compute an approximate representation
of vector α1v1,k + . . . + αnvn,k from approximate representa-
tions of vectors v1,k, . . . , vn,k.

E.g. streams of sparse tensors of particular shape.

Infinite-dimensional vector spaces are OK too. E.g. streams of
positively and negatively marked probabilistic samples repre-
senting elements of the vector space of finite signed measures
over some X are allowed.

DMM: main ingredients

• arbitrary linear streams

• arbitrary input and output arity of neurons

• countable network with finite active part

Standard DMM

y2,C1
y1,C1

x1,C1 x2,C1

fC1

x3,C1
x1,C2

fC2

x2,C2

y1,C2

y2,C2 y3,C2

W

Fig. 2: “Two-stroke engine” for a standard DMM

“Down movement”: for all inputs xi,Ck such that there is a
non-zero weight wt

(i,Ck),(j,Cl)
:

xt+1
i,Ck

=
∑

{(j,Cl)|wt
(i,Ck),(j,Cl)

6=0}

wt
(i,Ck),(j,Cl)

∗ ytj,Cl.

Note that xt+1
i,Ck

and ytj,Cl are no longer numbers, but vectors
(here, the formulas are written in terms of vectors themselves,
and not in terms of their approximate representations actually
used by the DMM in question), so the type correctness
condition states that wt

(i,Ck),(j,Cl)
can be non-zero only if xi,Ck

and yj,Cl belong to the same vector space.

“Up movement”: for all active neurons C:

yt+1
1,C , ..., y

t+1
nC,C

= fC(xt+1
1,C , ..., x

t+1
mC,C

).

Because input and output arities are allowed to be zero,
special handling of network inputs and outputs which has
been required for RNNs is not required here.

A neuron is active if there is at least one non-zero weight asso-
ciated with one of its inputs or outputs. The network matrix
can change with time, but we require that it has only a finite
number of non-zero elements at any given time, hence only a
finite part of the network is active at any given moment of
time.

Goal

Simplicity of RNNs (one kind of linear streams, hence no type
correctness conditions, and all neuron activation functions hav-
ing input and output arity one) together with the expressive
power of DMMs

Vector Space V

Consider a countable set L of tokens (pragmatically speaking,
L is often the set of all legal keys of hash dictionaries in a
given programming language). Consider the set L∗ of finite
sequences of non-negative length of elements of L.

The vector space V : the space of finite formal linear combi-
nations of elements of L∗ over reals.

Several fruitful ways to view elements of V :

•Finite linear combinations of finite strings

•Finite prefix trees with numerical leaves

• Sparse “tensors of mixed rank”

•Recurrent maps L→ R⊕ V

Variadic neurons

Activation functions f : V → V .

The collection F of neuron types consists of functions f .

Labels from L on the first level of elements of V are names of
inputs and outputs.

The network matrix W has a natural structure of multidi-
mensional tensor.

“Down movement”:

xt+1
f,nf ,i

=
∑
g∈F

∑
ng∈L

∑
o∈L

wt
f,nf ,i,g,ng,o

∗ ytg,ng,o.

“Up movement”:
yt+1
f,nf

= f (xt+1
f,nf

).

Self-referential mechanism

Streams of matrices or tensors shaped like W.

Dedicate one specific neuron Self, and use one particular
output of Self emitting streams of such matrices.

On each “down movement”, the latest value emitted by Self

on that output will be used as W.

The simplest way is to use as Self an accumulator neuron
taking additive updates from other neurons in the network.

A neuron with identity activation function, or with activation
function y = x + ∆x is convenient for that.

For y = x+ ∆x, one sets wx,y = 1 to make it an accumulator,
and accepts additive updates via the row of W corresponding
to ∆x.

This mechanism allows to encode algorithms changing
network weights or topology within the network itself.

This supports traditional learning, various learning to
learn schemas, use of fast weights [arxiv:1610.06258], etc.

Fuzzy if (“gating”)

A two-argument neuron: y = x1 ∗ x2 [Pollack 1987]
Occurs implicitly in LSTM and Gated Recurrent Unit nets.

DMM links and

references therein:

One-page overview:
http://www.cs.brandeis.edu/∼bukatin/dataflow-matrix-machines-2016.pdf

This paper:
http://www.cs.brandeis.edu/∼bukatin/dmm_learn_aut.pdf

Background:
http://www.cs.brandeis.edu/∼bukatin/partial_inconsistency.html

Core DMM primitives in Clojure:
https://github.com/jsa-aerial/DMM


